4-2 Additional Practice

Use long division to rewrite each rational function. Sketch the graph and identify
the asymptotes.

1. $f(x)=\frac{2 x}{x+1} f(x)=-\frac{2}{x+1}+2 ;$
2. $f(x)=\frac{2 x^{2}}{x^{2}-1} \quad f(x)=\frac{2}{x^{2}-1}+2 ;$

$$
x= \pm 1 ; y=2
$$

Graphing Rational Functions

Identify the vertical and horizontal asymptotes of each rational function.
3. $f(x)=\frac{2 x^{2}}{4 x^{2}-1} x= \pm 0.5 ; y=0.5$
4. $f(x)=\frac{2 x^{2}+10 x+12}{x^{2}-9} \quad x= \pm 3 ; y=2$

Graph each function. Label all the horizontal and vertical asymptotes.
5. $f(x)=\frac{10 x+20}{10 x^{2}-49 x-33}$
6. $f(x)=\frac{x^{2}-4 x-6}{2 x^{2}-10 x-12}$

7. You start a business typing papers for students and spend $\$ 3,500$ on a computer and office furniture. You estimate additional costs at $\$ 0.02$ per page. Write a rational function to model the total average cost per page for the first year.

$$
f(x)=\frac{0.02 x+3500}{x}
$$

8. The graph of a rational function has vertical asymptotes at $x=-3$ and $x=3$ and a horizontal asymptote at $y=1$. Write a function that has those attributes. Then graph the function to verify that it is correct. Sample answer:

$$
f(x)=\frac{x^{2}-1}{x^{2}-9}
$$

